

Lattice 2014 Columbia University, June 23-28, 2014

Testing the Witten-Veneziano mechanism with the Yang-Mills gradient flow on the lattice

M. Cè^{a)}, C. Consonni, G. Engel^{b)}, L. Giusti^{b)}

a) Scuola Normale Superiore & INFN, Sezione di Pisa... b) Università di Milano-Bicocca & INFN, Sezione di Milano-Bicocca

June 25, 2014

Outline

Theoretical introduction

The $U(1)_A$ problem

The Witten-Veneziano mechanism

Lattice Lattice regularization The Yang-Mills gradient flow

Results
Thermodynamic limit
Continuum limit

Conclusions

The $U(1)_A$ problem

- The η' meson is (almost)
 a flavour singlet
 combination of light
 quarks
- No parity partner in nature $\Rightarrow U(1)_V \times U(1)_A$ broken to $U(1)_V$
- The η' is too heavy to be the ninth pseudo Nambu-Goldstone boson: $m_{\eta'} < \sqrt{3}m_{\pi}$ [Weinberg 1975]

Pseudoscalar mesons

Meson	Quark content	Mass [MeV]
π+	uđ	139.57018(35)
π^0	<u>dā—uū</u> √2	134.9766(6)
π-	√ 2 dū	139.57018(35)
κ+	uš	493.677(16)
κ0		497.614(24)
$\bar{\kappa}^0$	sā	497.614(24)
κ-	sū	493.677(16)
η	$\cos \theta \eta_8 + \sin \theta \eta_0$	547.862(18)
η'	$-\sin\theta\eta_8 + \cos\theta\eta_0$	957.78(6)

$$\eta_8 = \frac{d\tilde{d} + u\tilde{u} - 2s\tilde{s}}{\sqrt{6}}$$

$$\eta_0 = \frac{d\tilde{d} + u\tilde{u} + s\tilde{s}}{\sqrt{5}}$$

$$\theta \simeq -11.4^{\circ}$$

The $U(1)_A$ problem: Why is the η' much heavier than other pseudo Nambu-Goldstone bosons?

Some definitions

Yang-Mills theory Euclidean action admits a θ -term

$$S[A] = \int d^4x \frac{1}{4g^2} F^a_{\mu\nu}(x) F^a_{\mu\nu}(x) - i\theta q(x)$$

where the topological charge density

$$q(x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^{\alpha}_{\mu\nu}(x) F^{\alpha}_{\rho\sigma}(x)$$

- Locally, is the divergence of a current $q(x) = \partial_{\mu} K_{\mu}(x)$
- Its spacetime integral $Q = \int d^4x q(x) \in \mathbb{Z}$ on classical configurations of finite Euclidean action
- $U(1)_A$ is broken by an anomaly $\propto 2N_f q(x)$

The topological susceptibility is the two-point function of q(x) (at zero momentum)

$$\chi_t = \int d^4x \langle q(x)q(0) \rangle$$

The Witten-Veneziano mechanism

A mechanism to solve the $U(1)_A$ problem based on the vanishing of the anomaly in the large N_c limit

[Witten 1979; Veneziano 1979]

- In the $N_C \to \infty$ limit $U(1)_A$ is restored. The η' is a Nambu-Goldstone boson
- Assuming leading order dependence on θ in Yang-Mills theory, $\chi_t^{\rm YM} \neq 0$ and $\mathcal{O}(1)$ in large N_c
- Dynamical quarks are an $\mathcal{O}\left(\frac{1}{N_c}\right)$ effect
- But no θ dependence in QCD with massless quarks $\Rightarrow \chi_t = 0$

The η' gets a mass $M_{\eta'}^2 = \mathcal{O}\left(\frac{1}{N_c}\right)$ given by the Witten-Veneziano formula

$$M_{\eta'}^2 = \frac{2N_f}{F^2} \chi_t^{\rm YM} + \mathcal{O}\left(\frac{1}{N_c^2}\right)$$

The dilute instanton gas

A solution of the $U(1)_A$ problem proposed by 't Hooft using instantons: dilute instanton gas approximation ['t Hooft 1976]

- Semiclassical approximation
- Free energy dependence on θ

$$F(\theta) = -\ln Z(\theta) = -VA(\cos \theta - 1)$$

- Arbitrary normalization $A \Rightarrow$ no prediction for χ_t^{YM}

$$\chi_t^{\text{YM}} = \frac{1}{V} \langle Q^2 \rangle = \frac{1}{V} \frac{d^2 F}{d\theta^2} \Big|_{\theta=0} = A$$

- No IR bound on instantons size
- Expected to be valid at high temperature

Higher moments

We need to study higher moments of the probability distribution of the topological charge Q in Yang-Mills theory

- Higher cumulants are obtained deriving $F(\theta)$

$$\left\langle Q^{2n}\right\rangle^{\text{con}} = (-1)^{n+1} \left. \frac{\mathsf{d}^{2n}}{\mathsf{d}\theta^{2n}} F(\theta) \right|_{\theta=0}$$

We define the ratio between the 4th and the 2nd cumulant

$$R \equiv \frac{\left\langle Q^4 \right\rangle^{\text{con}}}{\left\langle Q^2 \right\rangle} = \frac{\left\langle Q^4 \right\rangle - 3\left\langle Q^2 \right\rangle^2}{\left\langle Q^2 \right\rangle}$$

Higher moments

We need to study higher moments of the probability distribution of the topological charge *Q* in Yang-Mills theory

- Higher cumulants are obtained deriving $F(\theta)$

$$\left\langle Q^{2n}\right\rangle^{\operatorname{con}} = (-1)^{n+1} \left. \frac{\mathrm{d}^{2n}}{\mathrm{d}\theta^{2n}} F(\theta) \right|_{\theta=0}$$

We define the ratio between the 4th and the 2nd cumulant

$$R \equiv \frac{\langle Q^4 \rangle^{\text{con}}}{\langle Q^2 \rangle} = \frac{\langle Q^4 \rangle - 3 \langle Q^2 \rangle^2}{\langle Q^2 \rangle}$$

't Hooft

$$R = \frac{\langle Q^4 \rangle^{\mathsf{con}}}{\langle Q^2 \rangle} = 1$$

Witten & Veneziano

$$R = \frac{\langle Q^4 \rangle^{\text{con}}}{\langle Q^2 \rangle} \propto \frac{1}{N_c^2}$$

Lattice regularization

- Euclidean YM theory is discretized on a four-dimensional lattice with lattice spacing *a*. The lattice action
 - reduce to the action in the continuum for $a \rightarrow 0$
 - ► is gauge invariant at finite lattice spacing
- The gauge field on the lattice is defined on links between lattice sites: $U_{\mu}(x) \in SU(3)$
- The field strength tensor is defined with plaquettes
- Wilson plaquette action

$$S_W[U] = \frac{2N_c}{g^2} \sum_{P} \left(1 + \frac{1}{2N_c} \operatorname{tr} \left\{ U_P + U_P^{\dagger} \right\} \right)$$

Topological charge on the lattice

Naïve discretization of the topological charge density

$$q(x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^{\alpha}_{\mu\nu}(x) F^{\alpha}_{\rho\sigma}(x)$$

- $F^a_{\mu
u}(x)$ given in terms of plaquettes (clover definition)

$$F_{\mu\nu}^{a}(x) = \frac{1}{4}P^{a} \left(\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array} \right)$$

with $P^a(U)$ projecting over $\mathfrak{su}(3)$ Lie algebra

Topological charge on the lattice

Naïve discretization of the topological charge density

$$q(x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^{\alpha}_{\mu\nu}(x) F^{\alpha}_{\rho\sigma}(x)$$

- $F_{\mu\nu}^{a}(x)$ given in terms of plaquettes (clover definition)
- Two-point function at same point $\langle q(x)q(x)\rangle$ has contact terms ⇒ additive renormalization

Solutions:

 Fermionic definition, using a Dirac operator satisfying Ginsparg-Wilson, as Neuberger-Dirac operator D_N

$$q(x) = \frac{1}{2a^3} \operatorname{tr} \gamma_5 D_N(x, x)$$

Index theorem: $Q(x) = \sum q(x) = \frac{a}{2} \operatorname{tr} \gamma_5 D_N(x, x) = n_- - n_+$ [Giusti, Rossi, Testa, Veneziano 2002; Giusti, Rossi, Testa 2004; Lüscher 2004]

- or...

The Yang-Mills gradient flow

The gradient flow is the solution of the initial value problem [Lüscher 2010]

$$\dot{V}_{\mu}(t,x) = -g^2 \{ \partial_{\mu,x} S_W[V(t)] \} V_{\mu}(t,x) \qquad V_{\mu}(0,x) = U_{\mu}(x)$$

- $V_{\mu}(0,x)$: gauge field configurations from Monte-Carlo ψ evolving the 'flow-time' t with gradient flow $V_{\mu}(t,x)$: configurations smoothed within a radius $\sqrt{8t}$
- We can use a naïve discretization of the topological charge density in the continuum, applied to t>0 configurations [Lüscher, Weisz 2011]

$$q(t,x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(t,x) F^a_{\rho\sigma}(t,x)$$

- Numerical integration of gradient flow is less expensive than constructing the Neuberger-Dirac operator

Runge-Kutta integrator

To numerically solve the gradient flow equation, we implemented a fourth-order Runge-Kutta-Munthe-Kaas method

- Structure-preserving method: SU(3) Lie group structure is exactly preserved
- Very small systematic errors from numerical integration, negligible with respect to statistical errors

Topological charge distribution

at flow-time $t = 0.0000 \, \text{fm}^2$

Topological charge distribution

Topological charge distribution

at flow-time $t = 0.0355 \, \text{fm}^2$

Lattices details

run	β	<u>L</u> a	a[fm]	L[fm]	N _{conf}
A_1	5.96	10	0.102	1.0	36000
B_1	5.96	12	0.102	1.2	144000
C_1	5.96	13	0.102	1.3	280000
D_1	5.96	14	0.102	1.4	505 000
E_1	5.96	15	0.102	1.5	880000
F_1	5.96	16	0.102	1.6	1500000
B_1	5.96	12	0.102	1.2	144000
B_2	6.05	14	0.088	1.2	144000
B_3	6.13	16	0.077	1.2	144000
B ₄	6.21	18	0.068	1.2	144 000

(Preliminary) Results Thermodynamic limit – R

- Finite volume effects on R are compatible with statistical errors at $V = L^4 = (1.2 \text{ fm})^4$
- Statistical error on R is O(V)

(Preliminary) Results Thermodynamic limit – $\chi_t^{\rm YM}$

- Finite volume effects on R are compatible with statistical errors at $V = L^4 = (1.2 \,\text{fm})^4$
- Statistical error on R is
 O(V)
- The topological susceptibility $\chi_t^{\rm YM}$ shows finite volume effects at 1.2 fm

(Preliminary) Results Continuum limit – R

- Statistical error on R is $\mathcal{O}(V)$
- Continuum limit done at fixed volume (1.2 fm)⁴
- Continuum limit value

$$R = 0.233(45)$$

Not compatible with dilute instanton gas prediction
 R = 1

(Preliminary) Results Continuum limit – χ_t^{YM}

- Continuum limit value

$$t_0^2 \chi_t^{\text{YM}} = 6.47(7) \times 10^{-4}$$

- Result corrected against finite volume effects

$$t_0^2 \chi_t^{\text{YM}} = 6.54(8) \times 10^{-4}$$

 $r_0^4 \chi_t^{\text{YM}} = 0.0526(28)$

$$\chi_t^{YM} = (185(5) \,\text{MeV})^4$$

Comparison with other results

Our (preliminary) results:

$$R = 0.233(45)$$

$$r_0^4 \chi_t^{\text{YM}} = 0.0526(28), \chi_t^{\text{YM}} = (185(5) \,\text{MeV})^4$$

Results from previos lattice simulations using Yang-Mills gradient flow:

-
$$r_0^4 \chi_t^{\text{YM}} = 0.061(6)$$
, $\chi_t^{\text{YM}} = (192(7) \,\text{MeV})^4$ [Lüscher, Palombi 2010] using Neuberger-Dirac operator:

-
$$r_0^4 \chi_t^{YM} = 0.059(3)$$
, $\chi_t^{YM} = (191(5) \text{ MeV})^4$
[Del Debbio, Giusti, Pica 2005]

- R = 0.30(11) [Giusti, Petrarca, Taglienti 2007]

Conclusions

The Witten-Veneziano mechanism links the η' mass with the topological charge distribution in SU(3) YM theory

- We studied the topological charge distribution with unprecedented precision
- We implemented a new fourth-order integration method for the YM gradient flow
- First result of R with systematic and statistical errors under control: R = 0.233(45)
 - ► In agreement with Witten-Veneziano: $R = \mathcal{O}\left(\frac{1}{N_c^2}\right)$
 - ► Dilute instanton gas prediction R = 1 is inconsistent with this result
- Topological susceptibility $\chi_t^{\rm YM}$ measured with unprecedented precision: $t_0^2 \chi_t^{\rm YM} = 6.53(8) \times 10^{-4}$
 - ► In agreement with previous results
 - Compatible with η' experimental mass as predicted by the Witten-Veneziano mechanism

Thanks for your attention!

Backup

Runge-Kutta-Munthe-Kaas method

The YM gradient flow is the solution of the ordinary differential equation

$$\dot{V}(t) = Z[V(t)]V(t)$$

The fourth order Runge-Kutta-Munthe-Kaas method is

where $Z_i = Z[W_i]$

$$\begin{split} W_2 &= \exp\left\{\frac{1}{2}Z_1\right\} V(t) \\ W_3 &= \exp\left\{\frac{1}{2}Z_2 + \frac{1}{8}[Z_1, Z_2]\right\} V(t), \\ W_4 &= \exp\{Z_3\} V(t), \\ V(t + \alpha^2 \epsilon) &= \exp\left\{\frac{1}{6}Z_1 + \frac{1}{3}Z_2 + \frac{1}{3}Z_3 + \frac{1}{6}Z_4 - \frac{1}{12}[Z_1, Z_4]\right\} V(t). \end{split}$$

Reference flow-time

The reference flow-time t_0 is defined by

$$t^2 \langle E(t) \rangle \big|_{t=t_0} = 0.3$$

- Easy to measure with great statistical accuracy
- Our result

$$\frac{\sqrt{8t_0}}{r_0} = 0.943(7)$$

 using F_K measured in quenched QCD for scale setting

$$t_0 = 0.0290(16) \, \text{fm}^2$$

Autocorrelation

Integrated autocorrelation time $au_{\rm int}$ for various observable versus the lattice spacing a

(Preliminary) Results Continuum limit – $r_0^4 \chi_t^{\text{YM}}$

- Continuum limit value

$$r_0^4 \chi_t^{\text{YM}} = 0.0520(28)$$

Result corrected against finite volume effects

$$r_0^4 \chi_t^{\text{YM}} = 0.0526(28)$$